Intracellular pH regulation during spreading of human neutrophils

نویسندگان

  • N Demaurex
  • G P Downey
  • T K Waddell
  • S Grinstein
چکیده

The regulation of the intracelluar pH (pHi) during spreading of human neutrophils was studied by a combination of fluorescence imaging and video microscopy. Spreading on adhesive substrates caused a rapid and sustained cytosolic alkalinization. This pHi increase was prevented by the omission of external Na+, suggesting that it results from the activation of Na+/H+ exchange. Spreading-induced alkalinization was also precluded by the compound HOE 694 at concentrations that selectively block the NHE-1 isoform of the Na+H+ antiporter. Inhibition of Na+/H+ exchange by either procedure unmasked a sizable cytosolic acidification upon spreading, indicative of intracellular acid production. The excess acid generation was caused, at least in part, by the activation of the respiratory burst, since the acidification closely correlated with superoxide production, measured in single spreading neutrophils with dihydrorhodamine-123, and little acid production was observed in the presence of diphenylene iodonium, a blocker of the NADPH oxidase. Moreover, neutrophils from chronic granulomatous disease patients, which do not produce superoxide, failed to acidify. Comparable pHi changes were observed when beta 2 integrins were selectively activated during spreading on surfaces coated with anti-CD18 antibodies. When integrin engagement was precluded by pretreatment with soluble anti-CD18 antibody, the pHi changes associated with spreading on fibrinogen were markedly reduced. Inhibition of microfilament assembly with cytochalasin D precluded spreading and concomitantly abolished superoxide production and the associated pHi changes, indicating that cytoskeletal reorganization and/or an increase in the number of adherence receptors engaged are required for the responses. Neutrophils spread normally when the oxidase was blocked or when pHi was clamped near physiological values with nigericin. Spreading, however, was strongly inhibited when pHi was clamped at acidic values. Our results indicate that neutrophils release superoxide upon spreading, generating a burst of intracellular acid production. The concomitant activation of the Na+/H+ antiport not only prevents the deleterious effects of the acid released by the NADPH oxidase, but induces a net cytosolic alkalinization. Since several functions of neutrophils are inhibited at an acidic pHi, the coordinated activation of pHi regulatory mechanisms along with the oxidase is essential for sustained microbicidal activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkaline pH Promotes NADPH Oxidase-Independent Neutrophil Extracellular Trap Formation: A Matter of Mitochondrial Reactive Oxygen Species Generation and Citrullination and Cleavage of Histone

pH is highly variable in different tissues and affects many enzymatic reactions in neutrophils. In response to calcium ionophores such as A23187 and ionomycin, neutrophils undergo nicotinamide adenine dinucleotide phosphate oxidase (NOX)-independent neutrophil extracellular trap (NET) formation (NETosis). However, how pH influences calcium-dependent Nox-independent NET formation is not well und...

متن کامل

Regulation of intracellular pH in human neutrophils

The intracellular pH (pHi) of isolated human peripheral blood neutrophils was measured from the fluorescence of 6-carboxyfluorescein (6-CF) and from the equilibrium distribution of [14C]5,5-dimethyloxazolidine -2,4-dione (DMO). At an extracellular pH (pHo) of 7.40 in nominally CO2-free medium, the steady state pHi using either indicator was approximately 7.25. When pHo was suddenly raised from ...

متن کامل

Intracellular Pattern of Cytosolic Ca” Changes During Adhesion and Multiple Phagocytosis in Human Neutrophils. Dynamics of Intracellular Ca2+ Stores

The subcellular pattern of cytosolic free Caz+ ([Caz+li) changes in human polymorphonuclear neutrophils (PMNs) was studied using imaging of fura-2 fluorescence (time resolution 12.5 ratiosls) to determine whether PMNs could obtain directional information from the [Ca2+li signal. [Ca2+li changes were observed during initial adherence, the subsequent chemotactic movement, and the phagocytosis ...

متن کامل

pH sensing by FAK-His58 regulates focal adhesion remodeling

Intracellular pH (pHi) dynamics regulates diverse cellular processes, including remodeling of focal adhesions. We now report that focal adhesion kinase (FAK), a key regulator of focal adhesion remodeling, is a pH sensor responding to physiological changes in pH. The initial step in FAK activation is autophosphorylation of Tyr397, which increased with higher pHi. We used a genetically encoded bi...

متن کامل

Cytosolic pH and the inflammatory microenvironment modulate cell death in human neutrophils after phagocytosis.

Following phagocytosis in vivo, acidification of extracellular pH (pH(o)) and intracellular metabolic acid generation contribute to cytosolic proton loading in neutrophils. Cytosolic pH (pH(i)) affects neutrophil function, although its regulation is incompletely understood. Its effect on mechanisms of neutrophil death is also uncertain. Thus, we investigated pH(i) regulation in Escherichia coli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 133  شماره 

صفحات  -

تاریخ انتشار 1996